Healthcare Analytics: Test the Waters Before You Dive In

Analytics as a Differentiator

Many healthcare organizations see the use of analytics as a primary differentiator in the journey to value-based care. The current analytics vendor marketplace includes:

  • Niche and point analytics systems (solutions focused on one functional area – marketing, finance, clinical, claims, quality measurement, human resources, etc.)
  • Enterprise analytics tools that are part of larger offerings such as ERP and EHR
  • Enterprise data repositories, data lakes and tools to support data normalization, aggregation, visualization, etc.
  • Extended enterprise systems such as care management platforms to support population health management and consumer activation
  • External industry comparative data sets

Most health systems use these systems for a variety of analyses including:

  • Descriptive analytics – to answer questions such as what happened; how many, how often, where, who…; what exactly is the problem; how did we perform, etc.?
  • Diagnostic analytics – to answer why is this happening and what are the trends?
  • Predictive analytics – to answer what will happen?
  • Prescriptive analytics – to answer how do we make it happen?

Advanced organizations are moving into Continuous Intelligence (CI). Rather than depending on traditional score cards, which require people to orchestrate every step in the analysis, CI uses artificial intelligence and machine-based algorithms to automatically interpret and harmonize the data. CI continuously discovers patterns and learns what’s of value in the data, and immediately sends insights to decision makers. In healthcare, this will be extremely valuable at the point of care, for care managers working across the continuum and for strategists who need agility in their decision-making processes.

Demonstration Projects Help “Test the Waters”

Yet, healthcare leaders often struggle with basic analytics projects. In fact, Gartner has uncovered an 85% failure rate on data projects. Ironically, this may be in part the result of executives trusting their gut rather than the insights derived from the data. Other problems include political, data quality challenges, limited data interpretation skillsets, resistance to change, governance, etc. It is often helpful, prior to jumping in the deep end of the analytics pool for the organization to first:

  • Learn new ways to think about data
  • Collaborate on new ways to use data
  • Leverage existing analytics tools and resources prior to making significant analytics investments
  • Develop consistent methods for defining the problem to be solved, defining the data, cleaning up data inconsistencies and improve on data presentation skills

In other words, “test the waters” prior to diving in. A Demonstration Project provides the ability to learn about insight-driven decision making through the execution of a clearly defined project. The Demonstration Project works best with a limited scope, limited resource commitment and within a short time frame. An Analytics Demonstration Project focuses on data quality, building trust and deploying a consistent data management methodology. Insights can be channeled into performance improvement projects, strategic and operational plans or other pertinent initiatives.

Leading Demonstration Projects

Often a “See One”, “Do One”, “Lead One” approach works well — an outside analytics advisor partners with the organization and leads the first project, the advisor partners with the organization on the second project and in the third project, the organization leads the project with the advisor serving as a mentor. Preparation and starting the project well are essential elements for success and key steps include:

  • Understand the problems you are trying to solve: Many organizations acquire solutions before they have identified what the organizational “points of pain” are. This results in multiple tools or platforms competing for leadership attention, budget dollars and resources. Identifying the problems you are trying to address, or the questions you are trying to answer will help prioritize the use of limited analytics capacity.
  • Evaluate your existing investments in analytics tools, systems and methodologies: It is essential to understand your current analytic tools footprint. Rather than jumping to acquire a new analytics system or service, you may find you are able to leverage existing investments. Over time, the lessons learned from successful Demonstration Projects will identify opportunities to improve your overall Analytics Strategy. Specifics may include rationalization of  duplicate systems and addition of new capabilities to close gaps based on your existing vendor’s development road map.
  • Break Data Analytics projects into smaller waves versus a big bang deployment: Focused sprints, using an agile methodology rather than a traditional IT waterfall project implementation plan, shifts the focus to performance improvement. For the purpose of planning a Demonstration Project there are many ways to break the problem into smaller, targeted efforts. So for example, a Sepsis prevention and reduction effort can be divided into multiple smaller Demonstration Projects including descriptive and diagnostic analysis of sepsis rates, use of data driven screening tools or protocols, sepsis prediction tools, stakeholder education through data, etc.
  • Ensure data integrity: Source systems (such as your EMR or niche systems) have varying quality of data. Oftentimes data are missing or stored in different places depending on clinical documentation practices. In addition, definitions of data may vary from system to system or even from stakeholder to stakeholder. A common “Data Dictionary” becomes essential. Demonstration Projects can be useful defining organizational steps in developing the data dictionary, mining data, validating data, creating data baselines, analyzing data, presenting and visualizing data, and developing a go-forward data improvement plan.
  • Communicate benefits to the organization, including executives: Use techniques to model value and even Return on Investment/Value of Investment. By showing how Data Analytics initiatives impact strategic goals as well as daily operations, the organization can begin take a holistic view and integrate insight-driven decision making at all levels of the enterprise.

Organizations who leverage the strategic value of data to make informed decisions will be the ones who not only survive, but thrive.

 

Data – The Star of the Show

One-week post #HIMSS19, blogs and articles are using phrases like “no one unifying theme”, “something for everyone”, “the invasion of non-healthcare high tech” and “the end of the EHR movement” to summarize the global conference key take-aways. Even though the exhibition showcased interoperability, artificial intelligence, telehealth, security, the internet of things, precision medicine and more, the focus was not on these technologies. In fact, a more subtle underlying reality was clear in both the education sessions and vendor booths. Data is the star of the show!

Data in the Spotlight at HIMSS

Data collection, data integrity and quality, data access, data for benchmarking and comparative analysis, data protection and safety, data as part of care management platforms, data analysis and prediction, data visualization and ultimately, the transformation of data into information each had the spotlight. Data and analytics vendors were certainly a major focus of the show. These vendors were not outdone by solutions which offered data a by-product of a much more comprehensive offering such as Enterprise Resource Planning or data embedded within cloud-based services designed to solve specific business and clinical problems such as readmissions. Moreover, CMS took center stage in multiple forums to discuss the Interoperability and Patient Access Proposed Rule. With a goal to touch all aspects of healthcare, from patients to providers to payers to researchers, “CMS hopes to break down existing barriers to important data exchange needed to empower patients by given them access to their health data,” CMS Administrator Seema Verma indicated. HIMSS even gotten directly into the act. Recognizing the importance of data and information, they have changed their vision statement from “better health through IT” to “better health through information and technology.”

Siloed Organizations and Turf Battles

Yet, even with all of this attention and applause its hard to reconcile the maturity of data initiatives in many health and healthcare organizations today and the challenges faced by many. For data to be valuable, data must be converted into information, information into insights, insights into decisions, and decisions into action. Unfortunately, many health and healthcare still manage their data assets within siloed organization structures. Turf battles are common. Data-related issues for decision makers often include:

  • Confusion over who “owns” data and analytics
  • Questions regarding centralization versus decentralization of analytics resources and tools
  • Limited trust in the data and reports created by other parts of the organization often resulting in considerable rework
  • Inconsistent data definitions, duplicate data sources and systems, and costly resource requirements
  • Analysts who don’t understand the problem to be solved when data requests are “thrown over the fence”
  • Proliferation of spreadsheets, manual manipulation of score cards, and limited automation
  • Delays and slow turnaround of data requests
  • Data repositories that create many but rarely used reports
  • An inability to fully appreciate much less realize the benefits of big data, and predictive and prescriptive analysis

According to thought leaders at SAP, “less than 1% of the world’s data in business is analyzed and turned into benefits”.

The Enterprise Analytics Management System

Creation of an organizational approach to standardizing management of data, or Enterprise Analytics Management System (EAMS), results in a defined, documented and deliberately managed set of priorities, polices, procedures and processes. The EAMS should address the collection, definition, analysis, interpretation, translation and presentation of data to a wide variety of audiences.

Objectives for the EAMS are to:

  • Transition from a data and analytics departmental/siloed approach to a clear, consistent enterprise approach to managing data assets
  • Ensure key stakeholders understand enterprise analytics assets and have a consistent methodology for working together across the organization
  • Clearly define an enterprise analytics organization and operating model
  • Build a culture of collaboration and accountability to support data and analytics
  • Design and implement an oversight process or governance process
  • Develop an Enterprise Analytics Strategy and Pragmatic Road Map for the next few years

For data to truly be the star of the show, we must improve our ability to govern and manage this critically important asset.

 

Disruptive Innovation v. EHR Optimization: Is the Tail Wagging the Dog?

Disruptive innovation in healthcare will depend on new combinations of data, technology and business models to create new interactions with health and healthcare consumers. In a NEJM Catalyst Marketplace Survey, healthcare executives, clinical leaders, and clinicians ranked the healthcare sectors in most need of disruption. The top three sectors were hospitals and health systems (65%), healthcare IT vendors (47%), and primary care (36%). Interestingly, a dichotomy emerged when respondents considered whether buyers were willing to pay for solutions to result in disruptive innovation. Most notably, health care IT shot to the top of the list, named by half of respondents. Hospitals and health systems were second (46%).

Importance of EHR Optimization

Yet according to a recent Health Data Management survey, 72% of respondents from healthcare organizations indicate that achieving EHR optimization is either extremely important or very important for their organizations. Healthcare leaders vary in their definition of optimization. For some it consists of routine maintenance, for others it involves remediation of technical issues not addressed during implementation, and for others it includes the addition of new functionality. The performance-improvement minded define optimization as including standardization of workflows, improved use of data and application of best practices. There are three problems with this thinking:

  • At best optimization produces incremental performance improvement and change, resulting in a nominal return on investment and value,
  • Second, optimization is focused on the technology not the healthcare business or clinical problem to be solved – resulting in the proverbial technology tail wagging the dog, and finally
  • There is a perception that disruptive innovations must come from outside the industry, and if the data and technology leaders are “heads-down” focused on optimization, they may miss the chance to drive real change

Solving Narrow Business and Clinical Problems is the Key to Disruptive Innovation

Disruptive innovation requires one to solve the business and clinical problems of the industry. These problems are big, complex and often beyond the control of individual practitioners and health systems. For the best lesson on addressing complex problems, we can look within our own industry. Cancer, once a death sentence, was the focus of doctors and researchers for years. The common thinking was that a single cure for all forms of the disease would be the answer. Physician Sid Mukherjee, author of book The Emperor of All Maladies, describes the first breakthrough.  Sidney Farber, now known as the Father of Modern Chemotherapy, decided to focus exclusively on treating leukemia. By narrowing his focus Farber was able to make remarkable progress against this single condition. As a result, his work led to new protocols and treatments for other cancers. According to Mukherjee, “focusing microscopically on a single disease, one could extrapolate into the entire universe of diseases.” The healthcare industry can learn and apply this lesson – to solve solve large complex problems, first attack smaller micro-problems.

Move to the Next Level of Value & Return on Investment

There exists a full spectrum of high-impact value that can be realized and created when investments in HIT and digital tools are applied to solving healthcare business and clinical problems. The Healthcare Value Pathway illustrates the next levels of value and return on investment.

Key steps include:

  • First of all, start with a narrow focus on a specific problem such as the historic under-investment in primary care, the cost of a hospital stay, patients with multiple chronic conditions, the disparities in access or challenges in transitions of care
  • Next explore specific innovations such as:
    • Design new business and care delivery models
    • Develop new networks new networks of patients and providers
    • Create new approaches to sharing information
    • Reinvent work processes, decision making structures and roles/responsibilities
  • Analyze market, clinical, financial, claims, social determinant, etc. data to learn more about the problem to be solved
  • Finally, iterate micro-phases of designing and piloting the innovation

Oh, and what about technology? Technology is and will be pervasive in all that we do in health and healthcare. Consider as you design new innovations, potential high-impact or value-added technologies.  Rather than “wagging the technology tail”, move beyond optimization to focus value through disruptive innovation.

What Got Us Here, Won’t Get Us There: Strategic Planning for the Transition

Information and technology is becoming pervasive in all aspects of clinical care delivery and financial management of the health care enterprise.  Healthcare business, clinical and information technology leaders agree that IT is critical to population health management and value based reimbursement.  Yet, for many, day to day problems often keep IT leadership in a fire-fighting mode.  Many CIOs and healthcare business and clinical leaders find it difficult to find time to focus on the future.

Traditional healthcare information technology strategic plans were primarily consisted of a list of vendor applications and infrastructure to be deployed.  The bottom line for most healthcare organizations is that tactical IT road maps will not position the organization for tomorrow.  Segmentation of the IT strategic plan and portfolio into four primary programs can be useful in transitioning IT from a “keep the lights” on functional role to a strategic partner for the transition from volume to value.  Each quadrant has a unique role in maximizing the value IT contributes to the organization.

4 Strategic Plans

See below our thinking on each quadrant and key take-always for senior leadership

1 – Rethinking IT Organization Design & Operating Model:  Traditional IT organization structures, processes and operating models should be reconfigured to consider the healthcare enterprise of tomorrow.  Many IT organizations were founded within hospitals and those models no longer work given the level of consolidation, the requirements to support clinical integration networks, and the expectations of affiliates and partners.  New customer support functions, shared services centers and economies of scale are needed for today’s contemporary information technology services.  Collaboration with informatics, analytics, quality and security professionals is challenging traditional IT cultures and operating practices.

Key Take-Aways:  Have you redesigned the IT, Informatics, Analytics and Quality leadership and organization structure?  Do you have a plan for building new competencies?  What is the 2.0+ operating model?

2 –  Support Performance Improvement in Acute, Ambulatory & Post-Acute Care:  As pressure on healthcare costs increases and margins become more dependent of value, not volume, clinical and operations leaders will increase their collective focus on the Triple Aim, or care, health and cost.  Health systems will critically examine the clinical process, patient experience, outcomes and efficiency of care each with financial implications.  A myriad of reimbursement programs and contracts from payers will create new incentive and penalty structure for hospitals, physicians and post-acute providers.   From shared savings contracts, to bundled payments to direct to employer, each year additional measures and programs will be added.  Health systems need to improve their capabilities in business intelligence, real-time data access, and effective chronic care management

Key Take-Aways:  Have you transitioned from departmental or point enterprise performance improvement systems?  Do you have a plan for creating an analytics center of excellence?  What distinct business intelligence strategies are in place for enterprise performance improvement and population health management?

3 – Enable Health System Growth:  Consolidation, New Markets & Partnerships

Horizontal and vertical consolidation, new geographies, service lines and points along the continuum, and partnerships with other health systems, payers and new market entrants such as retail health are blurring the lines of what it means to be a health system.  Each market is different and each enterprise is different.  One size fits all strategies, or rip and replace with one core vendor are no longer viable strategies.  HFMA’s Value-Based Payment Readiness Survey ranks interoperability readiness as the weakest competency for most respondents.  Yet, it also indicates that 70 percent of financial executives anticipate their organizations will need to be extremely capable in data exchange to support value based reimbursement requirements and new market strategies in the next few years.

Key Take-Aways:  Have you developed an interoperability strategy based on the unique makeup of your enterprise, affiliates and partner readiness? Do you have a plan for identify management, access and referral management, and care coordination?  What is IT’s role in extending the enterprise and connecting the community?

4 – Drive Innovation & Transformation

Cloud computing, mHealth, patient activation and consumer engagement all come to mind when Digital Health Strategy is mentioned.  Billions of dollars have been invested in innovative start-ups and new transformative tools.  Yet, security risks are increasing daily.  Well beyond portals, initiatives such as virtual visits, home monitoring, self-service scheduling and bill payment, open notes, wearables, social health communities, and the list goes on.  A recent Surescripts Survey finds “patients prefer digitally savvy doctors and demand a connected healthcare experience.”

Key Take-Aways:  Have you developed an integrated patient and consumer engagement strategy?  Do you have a patient advisory council?  What are the unique characteristics of key patient populations that could drive innovation?

The Pivot: From Compliance to Strategy

HIMSS16 – billed as the largest and most important healthcare IT conference in the United States occurred last week in Las Vegas.  The message was loud and clear – something is different; the government mandate is over.  Strategy is the new, new.

For years the HIT world has encouraged alignment of enterprise strategy and the IT plan.  Alignment suggests two distinctly different things creating a linkage or connection.  Healthcare enterprise strategy decisions such as which markets do we enter, who do we acquire, which service lines do we emphasize, and what capital investments do we make are explored at executive and board levels.  Operations and financial decisions to support our hospitals and physician practices are made within organizational silos.  Sometimes IT is at the table, but more often than not information systems professionals are called in after the fact to “implement” selected systems and tools.  Sophisticated IT organizations have created IT Strategic Plans, IT Governance structures, IT Road Maps, and IT Champions/Customer Relationship Managers.  Our challenge – separate, sometimes aligned but rarely one.

Uncertainty is the new normal.  Strategies that take years to implement, vendor partners who are all vying for the same space and the challenges of mergers and acquisitions are driving us from 1.0 healthcare – where business as usual no longer is sustainable.  We are at a cross roads.  Those of us in transition must “pivot” our viewpoint from 1.0 volume based thinking to 2.0 and beyond.

JPGshutterstock_160836389

We need fresh, new perspectives regarding the relationship between enterprise direction and the digital strategies required for the future.  New harmonized strategies will:

  • Vary by geographic market and depend on community progress toward clinical integration
  • Necessitate partnerships, alliances and consolidations – no one can fund the investment alone and no one vendor will have all the solutions
  • Require governance models that address horizontal, vertical and virtual decisions making and integrate change across multiple systems of care
  • Move from an applications focus which emphasizes feature, functionality to a platform focus, producing highly configurable systems which will drive standardization and enable business strategies simultaneously
  • Redesign our organization structures, leadership competencies and operating models in IT, Informatics, Analytics and Quality
  • Acknowledge our work to create systems of documentation was foundational but not the end goal; systems of insight and behavioral change are the next stages in the evolution
  • Result in convergence of people, process, information, change and technology to rationalize costs, manage risks, realize value and activate patients to become involved in their care